Impact of residual and intrafractional errors on strategy of correction for image-guided accelerated partial breast irradiation

نویسندگان

  • Gang Cai
  • Wei-Gang Hu
  • Jia-Yi Chen
  • Xiao-Li Yu
  • Zi-Qiang Pan
  • Zhao-Zhi Yang
  • Xiao-Mao Guo
  • Zhi-Min Shao
  • Guo-Liang Jiang
چکیده

BACKGROUND The cone beam CT (CBCT) guided radiation can reduce the systematic and random setup errors as compared to the skin-mark setup. However, the residual and intrafractional (RAIF) errors are still unknown. The purpose of this paper is to investigate the magnitude of RAIF errors and correction action levels needed in cone beam computed tomography (CBCT) guided accelerated partial breast irradiation (APBI). METHODS Ten patients were enrolled in the prospective study of CBCT guided APBI. The postoperative tumor bed was irradiated with 38.5 Gy in 10 fractions over 5 days. Two cone-beam CT data sets were obtained with one before and one after the treatment delivery. The CBCT images were registered online to the planning CT images using the automatic algorithm followed by a fine manual adjustment. An action level of 3 mm, meaning that corrections were performed for translations exceeding 3 mm, was implemented in clinical treatments. Based on the acquired data, different correction action levels were simulated, and random RAIF errors, systematic RAIF errors and related margins before and after the treatments were determined for varying correction action levels. RESULTS A total of 75 pairs of CBCT data sets were analyzed. The systematic and random setup errors based on skin-mark setup prior to treatment delivery were 2.1 mm and 1.8 mm in the lateral (LR), 3.1 mm and 2.3 mm in the superior-inferior (SI), and 2.3 mm and 2.0 mm in the anterior-posterior (AP) directions. With the 3 mm correction action level, the systematic and random RAIF errors were 2.5 mm and 2.3 mm in the LR direction, 2.3 mm and 2.3 mm in the SI direction, and 2.3 mm and 2.2 mm in the AP direction after treatments delivery. Accordingly, the margins for correction action levels of 3 mm, 4 mm, 5 mm, 6 mm and no correction were 7.9 mm, 8.0 mm, 8.0 mm, 7.9 mm and 8.0 mm in the LR direction; 6.4 mm, 7.1 mm, 7.9 mm, 9.2 mm and 10.5 mm in the SI direction; 7.6 mm, 7.9 mm, 9.4 mm, 10.1 mm and 12.7 mm in the AP direction, respectively. CONCLUSIONS Residual and intrafractional errors can significantly affect the accuracy of image-guided APBI with nonplanar 3DCRT techniques. If a 10-mm CTV-PTV margin is applied, a correction action level of 5 mm or less is necessary so as to maintain the RAIF errors within 10 mm for more than 95% of fractions. Pre-treatment CBCT guidance is not a guarantee for safe delivery of the treatment despite its known benefits of reducing the initial setup errors. A patient position verification and correction during the treatment may be a method for the safe delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Residual Geometric Inaccuracies on Normal Organ Doses in Image Guided-Radiation Therapy of Prostate Cancer Using On-Board Kilovoltage Cone-Beam Computed Tomography

Introduction: The aim of this retrospective study was to evaluate the variations in delivered dose to the bladder, rectum, and femoral heads of prostate cancer patients during a course of treatment by image-guided radiation therapy (IGRT). Materials and Methods: Overall, 15 patients with prostate cancer were selected and. Each week, for each patient five consecutive cone beam computed tomograph...

متن کامل

Using corrected Cone-Beam CT image for accelerated partial breast irradiation treatment dose verification: the preliminary experience

BACKGROUND Accurate target localization is mandatory in the accelerated partial breast irradiation (APBI) delivery. Dosimetric verification for positional error will further guarantee the accuracy of treatment delivery. The purpose of this study is to evaluate the clinical feasibility of a cone beam computer tomographic (CBCT) image correction method in APBI. METHODS A CBCT image correction m...

متن کامل

Improved setup and positioning accuracy using a three‐point customized cushion/mask/bite‐block immobilization system for stereotactic reirradiation of head and neck cancer

The purpose of this study was to investigate the setup and positioning uncertainty of a custom cushion/mask/bite-block (CMB) immobilization system and determine PTV margin for image-guided head and neck stereotactic ablative radiotherapy (HN-SABR). We analyzed 105 treatment sessions among 21 patients treated with HN-SABR for recurrent head and neck cancers using a custom CMB immobilization syst...

متن کامل

Hypofractionated radiotherapy for lung tumors with online cone beam CT guidance and active breathing control

BACKGROUND To study the set-up errors, PTV margin and toxicity of cone beam CT (CBCT) guided hypofractionated radiotherapy with active breathing control (ABC) for patients with non-small cell lung cancer (NSCLC) or metastatic tumors in lung. METHODS 32 tumors in 20 patients were treated. Based on the location of tumor, dose per fraction given to tumor was divided into three groups: 12 Gy, 8 G...

متن کامل

Using an onboard kilovoltage imager to measure setup deviation in intensity‐modulated radiation therapy for head‐and‐neck patients

The purpose of the present study was to use a kilovoltage imaging device to measure interfractional and intrafractional setup deviations in patients with head-and-neck or brain cancers receiving intensity-modulated radiotherapy (IMRT) treatment. Before and after IMRT treatment, approximately 3 times weekly, 7 patients were imaged using the Varian On-Board Imager (OBI: Varian Medical Systems, Pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010